Nagra is one of twelve partner organisations participating in the research projects in the Mont Terri Rock Laboratory.

Hans Issler, President of the Board of Directors

The objective of the Swiss waste producers, who joined together in 1972 to form Nagra, is to construct safe deep geological repositories for all categories of radioactive waste without delay and at reasonable cost. Today, the feasibility of constructing such repositories in Switzerland using currently available technology is well documented and has been recognised by the safety authorities. Switzerland also has suitable host rock formations.

The next step in the process is to select disposal sites. The Federal Government is required to specify the objectives and requirements applying to the site selection procedure in a sectoral plan for deep geological repositories. Nagra’s Board of Directors has been involved intensively over the last year in evaluating the proposals made in this connection by the Federal Office of Energy (FOE), the lead authority in the sectoral plan process. Nagra also had the opportunity to submit a detailed response to the FOE as part of the official consultation process on the draft version of the sectoral plan. The purpose of the sectoral plan approach is to ensure that disposal sites are identified and evaluated within the framework of a fair, transparent participatory process. Implementation will be in three stages, with interim milestone decisions being made by the Federal Council, and will culminate in submission of an application for a general licence in accordance with the Nuclear Energy Act. The expectation of the members of the Swiss Parliament is that the Government will move forward with the procedure without delay and will make available the required manpower to ensure this. A parliamentary motion to this effect has already been submitted.

Nagra’s role in this process is that of an expert and project planner. At a specified time, Nagra will propose potential siting areas to the authorities based on the selection criteria set out in the sectoral plan. The Board of Directors is fully informed regarding the technical and geological basis for the siting proposals and has also been involved extensively in discussing the content of the sectoral plan and the procedure proposed therein.

With a view to meeting the upcoming challenges, the Board has strengthened its position with the appointment of Peter Zbinden, former Chief Executive Officer of Alptransit Gotthard AG (new railway link through the Alps). Thomas Ernst took over as Chief Executive Officer of Nagra on 1st May.

On behalf of the Board of Directors, I would like to thank Nagra’s Executive Board and all Nagra staff for their great and enthusiastic work commitment.

Hans Issler
Thomas Ernst, Chief Executive Officer

Following the approval in 2006 of the “Entsorgungsnachweis Project”, which demonstrated the feasibility of disposing of high-level waste in Switzerland, the year 2007 was dominated by activities surrounding the preparation by the Federal Office of Energy of the first strategic part of the sectoral plan for deep geological repositories. The plan defines the boundary conditions applying to the selection of sites for deep geological repositories in Switzerland and was the subject of a broad consultation phase from January to April. Based on the feedback from this consultation, the plan was then revised and submitted again to the federal offices and to a final consultation round by the Cantons. The Federal Council is expected to approve this first part of the sectoral plan in spring 2008, launching the search for disposal sites for high-level and low- and intermediate-level waste within well defined guidelines.

Nagra’s efforts in the year of reporting were thus focused on preparing the background for the so-called preliminary orientation according to the sectoral plan. This means that, in stage 1 of the site selection process, planning perimeters defined based on a review of the spatial planning situation and potential geological siting areas that have been evaluated in terms of safety are included in the sectoral plan following a three-month consultation phase. As the representative of the waste producers, it is Nagra’s task to propose potential geological siting areas. To consolidate the basis for making these proposals, Nagra was involved during the year in two geothermal borehole projects. The entire geological database was also updated and transferred into digital form.

A further focus of our activities was preparing a waste management programme as required by the Nuclear Energy Act. This will be submitted to the responsible authorities in 2008.

On 1st May 2007, I took up my position as Chief Executive Officer of Nagra, in the firm belief that Switzerland has an obligation to dispose of its radioactive waste permanently and safely within its own borders. Together with my colleagues at Nagra, I am committed to working daily towards solving this challenging task.

I would like to take this opportunity to thank all my co-workers most warmly for their great effort during the year. Their commitment to their work and the technical competence they bring to solving the issues they face have paved the way for meeting the challenges that will arise in the current business year. Without doubt, the most important of these is proposing several potential siting areas for geological repositories to the authorities based on safety criteria. We look forward with anticipation to the next stages in the site selection process, which will extend in the coming years over three phases and will end in submission of an application for a general licence.

Dr. Thomas Ernst
Nagra has been operating its own rock laboratory on the Grimsel pass for more than twenty years.

Our mandate – our work

“As an established national competence centre in the field of nuclear waste management, our aim is to construct safe deep geological repositories for all categories of radioactive waste arising in Switzerland, without delay and at reasonable cost.”

Our mandate

Radioactive wastes arise in Switzerland from the operation and later decommissioning of the five nuclear power plants and from the use of radioactive materials in various areas of medicine, industry and research (MIR waste). The Nuclear Energy Act of 2003 states that the waste producers are responsible – under the supervision of the federal authorities – for the permanent, safe management and disposal of all categories of radioactive waste. The Federal Government is responsible for MIR waste. With a view to fulfilling this task of safe disposal, the operators of the nuclear power plants and the Federal Government set up Nagra in 1972.

The Nuclear Energy Act, which came into force in February 2005, calls for deep geological disposal for all categories of waste. Two types of repository are planned: one for low- and intermediate-level waste (L/ILW) and one for spent fuel, high-level and long-lived intermediate-level waste (SF/HLW/ILW).

Nagra’s role is to provide the scientific and technical basis for implementing safe, long-term management of radioactive wastes. This involves proposing a waste management concept, evaluating the suitability of potential repository sites and preparing concrete projects. Nagra also ensures ongoing inventorying of radioactive materials and advises the waste producers on conditioning of wastes into forms that are suitable for disposal. In order to meet these responsibilities, Nagra has been pursuing a broadly based research and development programme since the mid-seventies. The work is carried out in close collaboration with the Paul Scherrer Institute (PSI, Villigen) and various universities and scientific institutions, both in Switzerland and abroad.

Our work

- Characterisation and ongoing inventorying of radioactive materials as a basis for planning disposal projects; checking waste specifications as part of official waste clearance procedures and as a service to the Members of the Nagra Cooperative.
- Acquisition and evaluation of the field data required for site selection, safety assessment and disposal projects.
- Project studies providing input for designing repository installations and engineered barrier systems, and for planning operating procedures.
- Ongoing analysis of results and data within the context of safety assessment studies and evaluation of information with a view to licensing procedures.
- Development of databases and fine-tuning of the methods used to analyse disposal system behaviour; verification and validation of the data and models used in performance assessment.
- Active participation in international collaborative projects, with the aim of coordinating and optimising planning and development activities.
- Fulfilling responsibilities in the areas of communication and information, in particular keeping the public informed on the current status of disposal programmes and proposals for waste management solutions.
- Providing expert services to third parties.
Developments in 2007

A group of visitors in the Mont Terri Rock Laboratory.

Energy policy, legislation, authorities

Radioactive waste
With a combined output of 3220 MWe, the five nuclear power plants produced around 26.4 billion kWh of electricity in 2007, making a contribution of approximately forty percent to total Swiss electricity production. The annual exchange of fuel elements gives rise to spent fuel for disposal; the operation of the power plants and the use of radioactive materials in the areas of medicine, industry and research also produce low- and intermediate-level waste. An up-to-date overview of waste types and volumes can be found on page 50 of this report.

Swiss Federal Nuclear Safety Inspectorate (ENSI)
On 18th October 2006, the Federal Council passed the draft of the new law on the Federal Nuclear Safety Inspectorate (ENSI). The effect of the legislation will be to make the current Swiss Federal Nuclear Safety Inspectorate (HSK) an organ of the Federal Government under public law, which will be independent of the Federal Office of Energy. The law was approved unanimously by the Council of States on 22nd June 2007 with 42 votes and by the National Council by 183 to 2 votes. The period for calling for a referendum expired with no call on 11th October 2007. ENSI will be managed by the ENSI Council, which is responsible for electing the executive board and defining the strategic objectives. This includes planning the direction of future activities, as well as manpower and resources. As a first step, the provisions applying to the ENSI Council will enter into force on 1st January 2008, with the remainder following one year later on 1st January 2009. This will allow the ENSI Council to prepare the necessary groundwork for the transition from HSK to ENSI. The Federal Commission for the Safety of Nuclear Installations (KSA) will be replaced from 1st January 2008 by the Commission for Nuclear Safety (KNS). As an advisory body to the Federal Government, the Department for the Environment, Transport, Energy and Communications (DETEC) and ENSI, KNS will be responsible for reviewing nuclear safety issues and can prepare expert opinions on ENSI’s decisions. The members of the ENSI Council and KNS were appointed by the Federal Council on 17th October.

Revision of the Radiation Protection Ordinance
The Federal Council passed the revised Radiation Protection Ordinance on 24th October 2007; it will enter into force on 1st January 2008. Swiss radiation protection legislation is based on the recommendations of the International Commission on Radiological Protection (ICRP).

Decommissioning and waste management funds
The revised ordinance on the decommissioning and waste management funds for nuclear installations was approved by the Federal Council on 7th December 2007 and enters into force on 1st February 2008.

The purpose of the funds is to cover the costs of disposing of operational waste and spent fuel after the decommissioning of the power plants, as well as the costs of decommissioning and dismantling the plants and disposing of the waste arising from these activities. The funds are supervised by the Federal Government. More detailed information can be found on the website www.bfe.admin.ch/entsorgungsfonds.
Legal framework

The legal provisions applying to radioactive waste management are contained in the Nuclear Energy Act and the associated Nuclear Energy Ordinance. Both entered into force on 1st February 2005.

The following principles apply:
• Radioactive materials should be handled in such a way as to minimise waste production.
• Radioactive waste must be disposed of in a way that ensures the long-term protection of man and the environment.
• In principle, radioactive waste arising in Switzerland must be disposed of domestically.
• The duty of disposal lies with the waste producers.
• The selected strategy is monitored deep geological disposal.
• The waste producers are required to produce a waste management programme (Article 32 of the Nuclear Energy Act), which has to be reviewed and approved by the Federal Government.
• The licensing procedures are focused at federal level. The general licence for a nuclear installation is subject to an optional referendum. Participation of the cantons, neighbouring cantons and neighbouring countries is assured.
• Site selection procedure: the Federal Government has to define the objectives and requirements in a sectoral plan.
• The costs of decommissioning and waste management are to be covered by funds supervised by the Federal Government.

The cost estimates on which payments made by the facility operators into the funds are based are reviewed periodically. Nagra reviewed the estimates for geological disposal in 2006 on behalf of the power plant operators and handed the information over to the operators for their approval. The updated estimate was approved by the authorities in 2007.

Sectoral plan for deep geological repositories

Article 5 of the Nuclear Energy Ordinance requires the objectives and criteria for the disposal of radioactive waste in deep geological repositories to be specified by the Federal Government in a sectoral plan. The sectoral plan approach is designed to ensure integrated coordination of all spatial planning impacts of a geological repository in a potential siting region and to ensure timely involvement in the siting procedure of the affected cantons, communities and authorities of neighbouring countries, as well as the affected public and other interested organisations. At the end of 2004, the Federal Office of Energy (FOE) was requested by the Federal Government to prepare the necessary background for the sectoral plan procedure. The plan consists of two parts: a strategic part and an implementation part with fact-sheets for potential siting regions. The procedures and criteria to be followed in site selection are specified in the strategic part, while the fact-sheets of the implementation part will be used to record the results of the stepwise siting process.

In 2006, the first two drafts of the strategic part of the plan were subjected to a wide consultation and participation phase involving the cantons, interested federal offices, neighbouring countries, organisations, political parties and representatives of the general public. A third draft was prepared based on the feedback from these consultation exercises and was submitted to a formal hearing phase from the middle of January until 20th April 2007. The hearing phase was accompanied by information events for the public; these were organised by the Federal Office of Energy on 15th January in Bern, 22nd January in Lausanne and 29th January in Zürich. On the invitation of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), a similar event was held in the German community of Lottstetten.

Authorities from Switzerland, Austria and Germany and representatives of cantons and Swiss organisations made good use of the opportunity to express their views on the draft plan, with around 150 responses being received (125 from Switzerland, 22 from Germany and 3 from Austria). A further 10,600 responses, mainly in the form of joint petitions, were received from individual persons. After further reworking and internal consultation with the responsible federal offices, the cantons then had a further opportunity, based on the Spatial Planning Act, to give their final views on the draft sectoral plan from November 2007 up to the end of the year.

Preparations for the waste management programme in accordance with the Nuclear Energy Act

Article 32 of the Nuclear Energy Act calls for a waste management programme to be prepared by the waste producers for all waste types. The programme will be reviewed by the federal authorities and approved by the Federal Council. Together with the sectoral plan, the programme will provide a sound basis for deciding on the way forward in the Swiss waste management programme and securing the necessary political support. Article 52 of the Nuclear Energy Ordinance requires the waste management programme to provide information on waste types and volumes, interim storage facilities, geological repositories and plans for their realisation.

Nagra has been requested by the waste producers to prepare the programme, based largely on the decision of the Federal Council on the Entsorgungsnachweiss project, the specification of the site selection procedure in the sectoral plan and input from the 2006 cost study (see page 24). Nagra continued with its preparations in 2007 and is ready to submit the programme to the authorities in 2008.

Systematic compilation of federal legislation

An English version of the Nuclear Energy Act can be found in the OECD/NEA Nuclear Law Bulletin, supplement to No. 72 (Switzerland, Act on Nuclear Energy, 2003).

The Nuclear Energy Ordinance has also been translated into English by the Federal Office of Energy.
Inventory of radioactive materials

Nagra continued to maintain a centralised inventory of existing radioactive wastes and materials, which was updated to include waste packages produced in 2007. The inventory includes all waste packages and fuel elements in containers currently stored at the nuclear power plants, in ZWILAG and in the Federal Government’s interim storage facility. At all times, it provides a complete overview of all wastes and materials stored in Switzerland.

The Model Inventory of Radioactive Materials (MIRAM) was developed further. All data from the centralised inventory of existing wastes were taken over into MIRAM and the waste type classification adapted in accordance with the waste categories specified in the current legislation. The inventories and data in MIRAM represent important input for the waste management programme and the sectoral plan procedure. The tool is used to determine volumes and inventories of waste and materials that will arise in the future (see page 51).

Key research and development work on conditioning of waste products was carried out at the Paul Scherrer Institute (PSI). One important aspect of this is quality control of the waste products from the plasma furnace at ZWILAG. Together with PSI, all the procedures for checking waste products were brought up to state of the art and will be integrated into the corresponding guideline of the authorities.

Inventories were determined and packaging concepts developed for strongly activated components from the reactors of the nuclear power plants Gösgen and Leibstadt and a first conditioning campaign was successfully completed. In parallel, a project on detailed 3D modelling of activation processes continued; this integrates results from measurements made at the Gundremmingen power plant in Germany.

Contract work included a further project on preparation of an inventory for waste from CERN; this runs until the end of 2008.

During the year, waste certification procedures were again carried out for waste from the power plants and PSI. For the power plants, the procedures for reprocessing waste from Sellafield Ltd. (previously BNFL) and Areva NP (previously Cogema) should be mentioned as these wastes will be transported back to Switzerland in the coming years. In terms of research waste, the focus was on the certification procedure for the waste from the Megapie project at PSI.

Once again, the work described above was carried out in close collaboration with the waste producers. They ensure that the conditioning and characterisation of Swiss radioactive waste fulfil the requirements set out by the regulatory authorities and are carried out in accordance with internationally recognised standards.
Developments in 2007

The site selection process – from how to where

In June 2006, the Federal Council approved the demonstration of disposal feasibility for high-level waste (HLW). Such a demonstration had already been made successfully in 1988 for low- and intermediate-level waste (L/ILW). The fundamental question of how to implement safe disposal of all radioactive waste types in Switzerland in deep repositories has thus been answered. In the stepwise process leading to disposal, the question now is where the required repositories should be constructed; the Federal Council has decided that this question is to be addressed as part of a federal sectoral plan process. The authorities will define the site selection process and the associated criteria for both L/ILW and HLW in a sectoral plan for deep geological repositories. When selecting sites, safety criteria continue to be assigned top priority, although spatial planning and socio-economic aspects are also taken into consideration.

With the requirements relating to procedure and criteria becoming more clear in the strategic part of the sectoral plan, Nagra’s activities during the year focused mainly on the geological and technical background. Information on waste properties and volumes, technical containment concepts and safety-relevant properties of potential host rocks was consolidated and reviewed.

Basis for implementing the new sectoral plan process

Information on the geological structure of the Swiss midlands and the formations that come into question as potential host rocks has been integrated into a Geographic Information System (GIS). This dataset was subjected to a detailed review in 2007 and the original data from numerous 2D seismic profiles from the oil industry in Switzerland were re-evaluated. Work was also completed on a comprehensive databank that includes all borehole and geothermal measurement data. The databank now contains information from more than 6000 boreholes in differing degrees of detail. Where the opportunity arose, Nagra was again involved in investigations being carried out by third parties on the geological structure of Switzerland, for example measurements in geothermal boreholes. During 2007, Nagra was able to obtain data from boreholes at Frauenfeld, Winterthur, Küttigen and Offtringen. These comprehensive databases provide the basis for identifying potentially suitable siting areas for repositories.

Preparation of the design for the disposal caverns and tunnels and technical containment concepts for various rock options is almost complete. As part of the sectoral plan process, the option of constructing caverns for all waste types at one site is being considered. In the late seventies and eighties, the concepts for a L/ILW repository assumed horizontal access to the disposal caverns and, to ensure a sufficient rock overburden, disposal facilities in mountains accessed from the valley floor were foreseen. Today, heavy loads can also be transported via shafts and ramps and the restriction to locations in the Alps, Pre-Alps and the Jura mountains thus no longer applies. This means that, for L/ILW, the geologically less complex areas in northern Switzerland also come into question.
Technical background

Until a preliminary selection of siting areas has been made, the focus of research within the context of the sectoral plan process will be on expanding and verifying existing information.

Geochemical retention processes and transport mechanisms

Most of the work on characterising geochemical retardation processes and radionuclide transport mechanisms is carried out in collaboration with the Waste Management Laboratory (LES) at PSI, with Nagra contributing fifty percent of the research costs. The investigations are looking at how transport of radionuclides through the engineered and natural barriers is retarded by chemical processes. The focus is on diffusive transport through clay barriers (bentonite and Opalinus Clay) and retention processes in cement, which is the main component of the near-field in L/ILW and ILW repositories. A further important task in 2007 involved preparing a sorption databank for a range of potential host rocks; this will be used in the evaluation of potential siting areas as part of the sectoral plan procedure. The databank takes into account the influence of the chemical composition and mineralogy of the host rocks on radionuclide retention phenomena and provides important input for safety analyses.

HLW programme: Work continued on diffusion and retention (sorption) of radionuclides in bentonite and Opalinus Clay. A key aspect of this was supplementing the long-term migration test DR (diffusion and retention) at Mont Terri with diffusion experiments on a laboratory scale. Mechanistic characterisation of retention processes used various spectroscopic methods, mainly Micro-XAS (X-ray absorption spectroscopy) using the beam line at the Swiss Synchrotron Light Source (SLS) at PSI. New work included studying the microstructure of Opalinus Clay using neutron imaging. The mechanistic description of cation (e.g. caesium) transport in compact clays was further developed. Important information was obtained on the retention of the safety-relevant iodide anion in clay.

L/ILW programme: The cement present in the disposal tunnels of L/ILW and ILW repositories functions as an effective chemical barrier for many radionuclides. The understanding of these retention mechanisms has been improved by wet chemistry and spectroscopic investigations. Some of the work focused on the redox behaviour of specific nuclides such as neptunium. When consid-
bentonite under increased temperatures, particularly its swelling capability. An important milestone in understanding coupled thermal, hydraulic and chemical processes in bentonite is provided by the results of an experiment carried out in the Äspö rock laboratory in Sweden (LOT experiment), where a borehole filled with bentonite was heated to a temperature of up to 130 degrees Celsius over a period of five years. A similar experiment is being carried out with alternative backfill materials in another borehole at Äspö.

In order to obtain a better understanding of the build-up of gas pressure and gas transport in the near-field, two new projects were initiated towards the end of the year together with various universities and research institutes. The modelling tools that are being developed describe the coupling of hydrochemical and hydromechanical processes. Numerical methods are also being developed for determining scale-dependent flow and transport parameters.
Projects at the Grimsel Test Site

CFM Formation and transport of colloids and radionuclides under realistic conditions
1) Laboratory programme, 2) field experiments for characterisation of the experiment site, 3) hydraulic and transport modelling, 4) long-term field experiments.

C-FRS Hydrogeological and geological characterisation of tectonic fracture systems
1) Characterisation and preparation of the test site, 2) test phase: tracer tests, radon measurements, acoustic tomography and resin injection test, 3) overcoring and analysis in the laboratory.

ESORED [EU project] Use of low-pH cements
1) Filing of a tunnel section with bentonite, 2) sealing installation, 3) monitoring of system behaviour.

FEBEX 1:1 demonstration of the emplacement concept for high-level waste (part of the EU FP-PRO project)
1) Laboratory programme for optimisation of measurement techniques, 2) long-term behaviour of the engineered barrier system under natural conditions.

FUNMIG [EU-Projekt] [EU project] Fundamentals of radionuclide migration
1) Geophysical and hydraulic characterisation of the tunnel near-field, 2) geochemical interactions.

GMT Gas transport through the engineered barriers and surrounding rock (completed in 2006)
1) Laboratory programme, 2) synthesis and modelling.

LCS Long-term interactions between cement solutions, porewaters and rock
1) Development and testing of low-pH cements, 2) testing cement properties, 3) long-term tests on interactions between rock and cement solutions, 4) determining the effects on radionuclide transport (planned).

LTD Long-term diffusion of radionuclides
1) Monopole experiment, 2) dipole experiment, 3) natural tracers, 4) in situ measurement of porosity, 5) radionuclide diffusion processes.

PSG Determination of pore space geometry in the matrix
Field campaign.

TEM Testing of monitoring methods
Comparison of geophysical monitoring methods and wireless data transfer with conventional monitoring techniques.

Grimsel Test Site (GTS)
Nagra has been operating the Grimsel Test Site (GTS) in the Berner Oberland region since 1994. Thirteen partner organisations from nine different countries, as well as the EU, are involved in the current investigations in the rock laboratory. Added to this is the significant contribution to the success of the experiment programme by numerous universities and research institutes from both Switzerland and abroad. Some of the experiments are supported financially by the European Union and the Swiss State Secretariat for Education and Research (SER).

The projects at the GTS currently have a running time of five to seven years, with each project including both intensive field work and a specially tailored laboratory and modelling programme. The GTS also offers the possibility to carry out less complex projects that can be realised in a relatively short time. These include, for example, tests of new investigation methods and equipment. What all the projects have in common is that they integrate different scientific disciplines, which is the only viable approach for solving the complex issues involved.

At the centre of the activities in Phase VI (2003 – 2013) are projects aimed at improving the understanding of engineered barrier systems and their practical implementation on a 1:1 scale under realistic conditions (construction and operational phase of a repository). A further focus is on projects looking at the transport behaviour of radionuclides under realistic, repository-relevant conditions. As part of the LTD (long-term diffusion) project, for example, a so-called monopole experiment was initiated, in which a low-activity radionuclide cocktail is injected into the rock matrix over an extended period of time. In the LCS (long-term cement studies) and CFM (colloid formation and migration) projects, the focus in 2007 was on further characterisation and preparation of the locations for the planned in situ experiments. Based on decisions made at the CFM and LTD project partner meetings, it was decided at the International Steering Committee (ISCO) meeting in June 2007 to plan and initiate the next project phases. A further important event in the first half of the year was the decision of Criepi (for abbreviations see page 53) and SKB to join as partners in the CFM project.

Besides the key experiments, other projects focused on the improvement and testing of methods for characterising the host rock. A three-year project was initiated together with Criepi for the hydrogeological and geological characterisation of crystalline rock and tectonic fracture systems. A project managed by the Japanese organisation RWMC on further development of geophysical investigation techniques was completed successfully at the beginning of the year.

As a member of the IAEA “Centres of Excellence” initiative, and in partnership with the University of Bern and the ETH (Zürich), the GTS makes an important contribution to the training of young scientists.
Developments in 2007

Mont Terri Rock Laboratory (FMT)
The international Mont Terri research project (St-Ursanne, Canton Jura) has been underway since 1996 in side tunnels of the security gallery of the Mont Terri motorway tunnel. The experiments are aimed at the geological, hydrogeological, geochemical and geotechnical characterisation of clay formations, in particular the Opalinus Clay. The project allows Nagra to further investigate, on a realistic scale, the properties of this potential host rock that are relevant for disposal of radioactive waste.

Twelve partner organisations from six countries (Belgium, Germany, France, Japan, Switzerland and Spain) are currently involved in the extensive research programmes. The project is managed by the Federal Office of Topography (Swisstopo) and is accompanied by a “Commission stratégique”. The interests of Canton Jura are represented by the “Commission de suivi”.

In the first half of the year, the 12th programme phase was completed as planned, with Nagra being involved in 24 of a total of 31 experiments. Participation in the current phase 13 (July 2007 – June 2008) includes continuation of all the experiments from the previous phase plus the initiation of new experiments in the areas of rock mechanics and geochemistry. Projects from the 6th Framework Programme of the EU (GM-A and SE-H experiments) are also continuing. Based on experience and recommendations made by the authorities arising from the review of the Entsorgungsnachweis project, the focus of Nagra’s planned experimental activities is on in-depth research on the evolution of the excavation damaged zone (MB, SE-H, SF and VE(II) experiments), diffusion of radionuclides in the Opalinus Clay (DR and NT experiments), gas migration (HG-A and HG-C) and setting up a long-term experiment on the interaction between cement (used as a solidification, backfilling and construction material) and clay (CI experiment).

As the space available for conducting experiments in the galleries and niches was effectively full at the end of phase 12, it became clear that an expansion of the rock laboratory would be necessary. Work on this began in November 2007 and, following completion in October 2008, the facility will have an additional 170 metres of galleries and 80 metres of niches. The excavation work will also be used as an opportunity to investigate the rock mechanical properties of the Opalinus Clay in more detail.
Developments in 2007

Commercial services

2006 review of waste disposal costs
To secure the financing of waste management activities, the power plant operators are required to set aside financial reserves, the amount of which is determined on the basis of estimated disposal costs. The cost estimates are reviewed periodically and updated where necessary. The last update was carried out in 2006 and the results were submitted to the authorities. HSK reviewed the cost study in 2007 and recommended that the amount of the contributions to the decommissioning and waste management funds should be based on the cost study. At the same time, HSK also made several recommendations that will be important for the next update. The administrative commission for the two funds approved the cost estimates at its meeting of 6th December 2007.

International Services and Projects (ISP)
In 2007, Nagra’s ISP Division celebrated its first round birthday. During the 10 years since it was established, the breadth and scope of its activities have seen a steady growth. The know-how and experience in the field of radioactive waste management accumulated by Nagra over the last 35 years continues to be recognised as a valuable resource for other national waste management programmes, as well as for technical applications outside the nuclear area. The spectrum of support offered ranges from strategic programme planning, specification of waste inventories, site selection, characterisation and evaluation to repository design, safety case development, safety analyses and public communication. ISP is strongly committed to providing timely, high quality and cost-effective solutions, maximising the value offered by engaging motivated and dynamic staff who are also actively involved in the national programme. Of particular interest are joint projects that have synergies with the activities in the Swiss national programme, either directly strengthening the basis for ongoing tasks or expanding the knowledge base.

A large proportion of the contract work in 2007 came from partners in Japan. The work was carried out as part of the various bilateral collaboration agreements between Nagra and Criepi, JAERI, JNFL, Numo, RWMC and Obayashi (see page 53 for abbreviations). The year also saw a marked increase in the number of projects in Europe and North America, as well as nascent steps in South Korea. Examples include the evaluation of alternative disposal systems (Saanio & Riekkola OY, Finland), contribution to the engineering design of the Hungarian geological repository, review of the Slovenian spent fuel repository concept, advising on site exploration and evaluation for the LLW repository in Canada (OPG) and field investigations for characterisation of the excavation disturbed zone in underground test caverns in Korea. In addition, Nagra geoscientists acted as expert advisers on major infrastructure projects (e.g. railway tunnels), environmental issues (e.g. CO₂ sequestration) and technology development (e.g. measurement techniques for cap rocks); these activities continue to be a small but enriching part of our work.

Collaboration with Numo during the year ranged from support of field training activities (Yokosuka test site) to methodologies for developing the safety cases for potential volunteer sites.

For higher-activity low-level waste, JNFL of Japan is moving forward with its project for a medium-depth repository at the Rokkasho site. Construction of a test cavern at a depth of approximately 80 metres has been completed and the Nagra-Obayashi consortium is providing technical support in several areas. For example, technologies developed by Nagra for characterising excavation disturbed zones and their resaturation behaviour are being used. This work is linked with the installation of sealing structures in the tunnels of geological repositories.

Nagra and JAERI continued their long and successful collaboration, with the focus on JAERI’s rock laboratory programme, which involves parallel development of two underground facilities (Mizunami in crystalline rock and Horonobe in sediments), and the evaluation of related surface investigation activities within the context of the knowledge management system being developed by JAERI.

In 2007, collaboration with Criepi was further strengthened with the initiation of a multi-year project for the characterisation of fractured rock at the Grimsel Test Site.
In June 2007, representatives of the international partners involved in the research at the Grimsel Test Site met in Switzerland for the annual ISCO meeting.

Federal Minister Leuenberger giving the opening address at the international ICGR’07 conference in Bern: “We all bear responsibility for the safe disposal of radioactive waste. Collective responsibility in this respect carries more weight than individual opinions.”

A regular exchange of information between Nagra and its foreign partner organisations takes place as part of the various formal bilateral agreements. Joint projects are also carried out with several partners, either on a multilateral basis (e.g. rock laboratory projects) or together with international organisations (particularly the OECD/NEA and the EU). In addition to the formal collaboration structure, international contacts have also resulted in a close network of personal relationships, which provide Nagra with a wealth of opportunities to discuss technical issues. This network includes not only the partner organisations but also the wider scientific community that is integrated into Nagra’s daily activities through review of its scientific work.

The joint research projects at the Grimsel Test Site and the Mont Terri Rock Laboratory moved forward in 2007 and Nagra staff continued to be involved in Andra’s Bure rock laboratory in France. These projects were all complemented by joint laboratory and modelling programmes run by various research institutes; this includes the projects run under the auspices of the OECD/NEA on sorption and on the thermochemical databank. Nagra’s involvement in EU Framework Programmes has now become an important component of its research and development activities. Nagra staff are also involved in advisory bodies of foreign sister organisations (particularly Belgium, Finland, France and Canada) and are able to benefit directly from this experience. Over and above the various specific joint projects, Nagra is also represented in several working groups of the OECD/NEA and works together with the IAEA. Key results of international collaboration are presented in the project-specific sections of this report.

As in previous years, Nagra took part in international meetings on the topic of waste disposal, frequently making presentations on various aspects of the Swiss programme. Nagra is also represented on the programme committees of several international scientific conferences and workshops.

As part of what is now an annual event, Nagra attended the meeting of the German-Swiss Commission (DSK, working group 4).

Important international conference in Bern
From 15th to 17th October 2007, the city of Bern was host to the international ICGR’07 conference with the title “Geological Repositories: A Common Objective, a Variety of Paths”. 193 high-level decision-makers from 19 countries participated in the event, which was dedicated to addressing the challenges faced by decision-making in the areas of site selection and implementation of geological repositories. The conference was organised by Nagra and co-sponsored by the IAEA, OECD/NEA, the European Commission and EDRAM (International Association for Environmentally Safe Disposal of Radioactive Materials).

Framework Research Programmes of the European Union (EU)
Since 1984, the Framework Research Programmes of the EU have functioned as an important instrument for financing research projects in Europe. Many of the challenges faced by industry and society today can no longer be solved in isolation by one country alone. The 6th Framework Programme (2002 – 2006, partly extended) is aimed specifically at creating a European Research
Public relations

Dialogue with the public
As is their right, the citizens of Switzerland expect clear and understandable answers to their questions surrounding the issue of radioactive waste disposal. The interests of the widest possible spectrum of societal groups are involved, with economic, ecological, energy policy and ethical issues being reflected in the ongoing debate. The drafting of the first part of the sectoral plan on geological repositories during 2007 had the effect of increasing the information needs of politicians and the public alike. Nagra is aware of the significance of direct, open communication with the public, the media, the authorities, political circles, research partners and the scientific community as a whole and makes every effort to fulfil its responsibilities in this respect.

Exchange of opinions with the public is of key importance. Nagra was in direct contact with the public on more than 240 days in 2007 – at trade fairs and exhibitions, tours of the rock laboratories, invited presentations and the road-show which visited ten cities in the German-speaking part of the country.

Two information trips to Germany, Sweden and Finland gave politicians and representatives of the authorities the opportunity to experience first-hand the status of the waste management programmes in these countries. Representatives of cantonal governments and parliaments and politicians from Germany also visited the Swiss rock laboratories.

Open dialogue during the information tour, exhibitions and guided tours
In summer 2007, the information roadshow visited ten cities in the German-speaking part of Switzerland. With the slogan “Switzerland has radioactive waste. We are taking care of it. Nagra. Who else”, the aim was to make the public more aware of the important task entrusted to Nagra. Large numbers of the public took advantage of the opportunity to obtain information on waste management and to discuss issues of interest with Nagra staff. The use of new media was tested, with the possibility to enter a competition on the website or using text messaging.

Local exhibitions and trade fairs are popular meeting points and offer a very direct form of contact with the public. Nagra was present during the year at local trade fairs in Frauenfeld, Embrach, Zofingen and Marlachel and at the larger autumn fairs in Schaffhausen and Winterthur. We also provided materials for a training seminar for teachers in Canton Bern and, in summer, were involved in a countrywide event on experiencing geology with two open days at the Grimsel Test Site.

The rock laboratories at Grimsel [Canton Bern] and Mont Terri (Canton Jura) continue to be a popular destination for visitors. During the year, around 3700 people visited the two facilities. An open day at the Mont Terri Rock Laboratory in November attracted more than 300 people.

Working with the media
In 2007, numerous articles on radioactive waste management were published in the Swiss media. Key topics were the sectoral plan procedure and the link between waste management and the question of the future use of nuclear energy. Nagra produced media releases on its ordinary general meeting, new

CARD Coordination of research, development and demonstration focal points for deep geological disposal of long-lived radioactive waste
ESDRED Engineering studies and demonstration of repository designs in underground rock laboratories
FUNMIG Fundamental processes of radionuclide migration in the geosphere
NF-PRO Building up understanding and model descriptions of key processes in the near-field for various host rock types and disposal concepts
PAMINA Performance assessment methodologies in application to guide the development of the safety case
TIMODAZ Thermal impact on the damaged zone around a radioactive waste repository in clay host rocks
Area (ERA). The aim is to promote excellence in scientific and technological capacities and to encourage European competitiveness and innovation by supporting improved cooperation among researchers and the coordination of their projects.

Based on the research agreement between Switzerland and the EU, Swiss researchers have been able, since 2004, to participate fully in the 6th Framework Programme. In return, Switzerland makes a direct contribution to the total budget of the EU Framework Programme.

The research projects planned in the area of deep geological disposal of radioactive waste developed as part of the EURATOM programme allow Nagra to expand its technical knowledge base efficiently and continuously and to be instrumental in shaping important developments in Europe. In the final outline of proposals for the 6th Framework Programme issued in 2005, Nagra applied together with its European sister organisations for the support of the EU in the following areas:

- Coordination of research and development on deep geological disposal of spent fuel and long-lived radioactive waste (CARD).
- Improvement and harmonisation of methods and tools for demonstrating long-term safety (PAMINA).
- Investigation of the dissolution mechanisms of the spent fuel matrix (MICADO).
- Thermal effects on the excavation damaged zone of a deep repository in clay (TIMODAZ).

In 2007, Nagra’s participation focused on the continuation and completion of the projects ESDRED, FUNMIG and NF-PRO, all of which have been running for several years. Preparations for the projects CARD, MICADO, PAMINA and TIMODAZ are also underway.

As part of the first call for the 7th Framework Programme (EURATOM work programme 2007), discussions have been held on monitoring of repositories (MoDeRn; coordination Andra) and gas transport (FORGE; coordination BGS).

Developments in 2007
research projects at the Grimsel Test Site, waste management and energy policy, the new Nagra CEO, an opinion poll conducted during the year and the ICGR meeting in October. Around 60 articles and advertisements appeared in technical publications.

Information service for individuals and schools

During the year, Nagra’s in-house information service sent out around 800 packages with brochures, DVDs and videos to individuals, organisations and clubs. Responses were provided to a wide range of questions from the public. Schools continued to be supported intensively and numerous inquiries were received from teaching staff for information, teaching materials and measuring equipment. As in previous years, measuring radioactivity continues to be of particular interest and the 40 sets of measuring equipment were constantly on loan.

Print products and website

In 2007, Nagra published an annual report, a brochure on natural analogues and the pocket-book “Stein” on the geology of Switzerland. Three issues of “nagra info”, with information on current waste management issues, reached around 60,000 readers in Switzerland. In December, the first “e-info” electronic newsletter was sent to around 1600 subscribers. It appears at the same time and with the same content as “nagra info”, but additional topics may be included. With more than 800 hits, the number of daily visitors to the website doubled compared to the previous year.

As the central component in Nagra’s information palette that is continually kept up to date, the website is being redesigned to better reach identified target groups, particularly with a view to the upcoming orientation on potential siting regions. The work on redesigning the website began in autumn and the new version will go online during the announcement of the siting proposals as part of the sectoral plan process; this is expected to take place in summer 2008. Work also began in autumn on a film that will meet the anticipated additional information needs of the public. Parts of the film will be included on the website.
At the end of 2007, 76 people were employed at Nagra’s headquarters, corresponding to 70.3 full-time positions (70.0 in the previous year). 14 people – corresponding to 5.5 full-time positions (5.7 in the previous year) – were also employed as part-time and support staff and trainees. A large part of Nagra’s work is carried out together with research institutes, technical universities and geological and engineering consultants.

On 1st May 2007, Dr. Thomas Ernst took up his position as Chief Executive Officer. Dieter Camenzind took over as Head of Controlling and Finance on 1st July.

The Board of Directors held four meetings to deal with current business. Focal points included Nagra’s response to the draft sectoral plan for geological repositories prepared by the Federal Office of Energy and specification of the content of the waste management programme to be submitted to the authorities by the waste producers in 2008. To consider the technical and geological basis for selecting potential siting regions as part of the sectoral plan process, the Board of Directors met behind closed doors in July. The Board took note of the research and planning activities for 2008 and approved the required outline credit. It was also decided to introduce an internal controlling system and to update the performance-based salary system. In this connection, the Board established a compensation committee.

Important technical questions were discussed by the various commissions. The Technical Committee held four meetings and the Commission for Information met three times. The Finance Commission met twice to consider the closing of the annual accounts and the budget for 2008.

The ordinary general meeting of the Members of the Nagra Cooperative took place on 12th June 2007 in Bern. The Members approved the annual report and accounts for 2006. Total expenditure amounted to 33.79 million CHF. 3.71 million CHF could be allocated to services performed for third parties and 0.68 million CHF to services for the Members of the Cooperative. Research contributions amounted to 0.30 million CHF and other operating income to 0.19 million CHF. The resulting net expenditure for the Members of the Cooperative for 2006 amounted to 28.93 million CHF.

On the occasion of the ordinary general meeting, Benoît Revaz of Energie Ouest Suisse (EOS) announced his intention to step down; the new EOS representative will be Dr. Michael Plaschy. The revision of the Statutes in 2006 created the possibility to bring in external persons as Members of the Board of Directors and Peter Zbinden was accordingly elected as a Member.
Members of the Cooperative, Board of Directors, Commissions, Auditors

Members of the Cooperative
Swiss Federal Government
Bern
BKW FMB Energie AG
Bern
Kernkraftwerk Gösgen-Däniken AG
Däniken
Kernkraftwerk Leibstadt AG
Leibstadt
Nordostschweizerische Kraftwerke AG
Baden
Energie Ouest Suisse
Lausanne

Board of Directors
(period of office 2006 – 2009)
Hans Issler
President
Nagra
Dr. Manfred Thumann
Vice-president
Nordostschweizerische Kraftwerke AG
Bend’r Revaz
Energie Ouest Suisse
(untill 12. June 2007)
Dr. Michael Plaschy
Energie Ouest Suisse
(from 12. June 2007)
Peter Hirt
Kernkraftwerk Gösgen-Däniken AG
Hermann Ineichen
BKW FMB Energie AG
Martin Jermann
Paul Scherrer Institute
Mario Schönenberger
Kernkraftwerk Leibstadt AG
Peter Zbinden
(from 12. June 2007)

Technical Committee
Mario Schönenberger
Chairman
Kernkraftwerk Leibstadt AG

Finance Commission
Michael Sieber
Chairman
Nordostschweizerische Kraftwerke AG

Commission for Legal Issues
Hansueli Sallenbach
Chairman
Nordostschweizerische Kraftwerke AG

Commission for Information
Peter Hirt
Chairman
Kernkraftwerk Gösgen-Däniken AG

Auditors
PricewaterhouseCoopers AG
Zürich
Comments on the annual accounts for 2007

In 2007, total expenditure increased by a total of around 7.1 million CHF compared to the previous year. This was due mainly to extraordinary reserves in the amount of around 1.2 million CHF for future restructuring costs and to additional expenditure in the national programme. The latter is mainly a result of contribution to the expansion of the Mont Terri Rock Laboratory (1.5 million CHF), additional geological field investigations (2.4 million CHF) and active preparation for stage 1 of the sectoral plan process (0.9 million CHF). Services purchased increased by 6 million CHF to 25 million CHF. Personnel costs, including reserves, increased compared to the previous year by around 1 million CHF to 13.5 million CHF.

Total revenues also increased by 7.1 million CHF compared to the previous year to 40.9 million CHF. The contributions of the Members of the Cooperative increased by 6.8 million CHF to 35.7 million CHF.

Taking into account work in progress, income from deliveries and services increased by 0.4 million CHF to 5.1 million CHF. This increase is due mainly to the following factors: Research and partner contributions decreased by 0.2 million CHF to 0.1 million CHF compared to the previous year. Taking into account work in progress and the change in prepayments, services for third parties increased by 0.7 million CHF to 4.4 million CHF compared to the previous year.

Further information on the different positions can be found in the appendix to the annual accounts.

Wettingen, 8th April 2008

Dr. Thomas Ernst, Chief Executive Officer

Balance sheet

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Land and buildings</td>
<td>2 593 379</td>
<td>2 563 379</td>
</tr>
<tr>
<td>Other fixed assets</td>
<td>135 700</td>
<td>168 500</td>
</tr>
<tr>
<td>Capital assets</td>
<td>2 729 079</td>
<td>2 731 879</td>
</tr>
<tr>
<td>Work in progress</td>
<td>1 598 017</td>
<td>1 889 487</td>
</tr>
<tr>
<td>Receivables from deliveries and services</td>
<td>3 202 348</td>
<td>4 015 491</td>
</tr>
<tr>
<td>Other receivables</td>
<td>453 257</td>
<td>215 317</td>
</tr>
<tr>
<td>Accrued income</td>
<td>10 558</td>
<td>2 475 618</td>
</tr>
<tr>
<td>Cash and cash equivalents</td>
<td>8 378 283</td>
<td>5 142 112</td>
</tr>
<tr>
<td>Current assets</td>
<td>13 642 463</td>
<td>13 738 025</td>
</tr>
<tr>
<td>Assets</td>
<td>16 371 542</td>
<td>16 469 904</td>
</tr>
</tbody>
</table>

Liabilities		
Cooperative capital	120 000	120 000
Equity capital	120 000	120 000
Long-term financial obligations	650 000	650 000
Reserves	6 420 504	7 108 376
Payables from deliveries and services	4 582 152	5 677 017
Prepayments	1 412 334	1 395 712
Other liabilities	283 614	261 382
Deferred income	2 902 938	1 257 417
Borrowed capital	16 251 542	16 349 904
Liabilities	**16 371 542**	**16 469 904**

Explanations in appendix pages 44 / 45
Income statement

<table>
<thead>
<tr>
<th>Description</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributions to administration costs</td>
<td>600 000</td>
<td>600 000</td>
</tr>
<tr>
<td>Contributions to project costs</td>
<td>28 329 939</td>
<td>35 115 749</td>
</tr>
<tr>
<td>Contributions of Cooperative Members</td>
<td>28 929 939</td>
<td>35 715 749</td>
</tr>
<tr>
<td>Research contributions</td>
<td>304 485</td>
<td>66 134</td>
</tr>
<tr>
<td>Income from other services for Cooperative Members</td>
<td>677 566</td>
<td>608 069</td>
</tr>
<tr>
<td>Income from services for third parties</td>
<td>3 710 801</td>
<td>4 073 407</td>
</tr>
<tr>
<td>Change in prepayments</td>
<td>1 089 176</td>
<td>16 622</td>
</tr>
<tr>
<td>Income from deliveries and services</td>
<td>5 782 028</td>
<td>4 764 232</td>
</tr>
<tr>
<td>Adjustment for work in progress</td>
<td>-1 119 497</td>
<td>291 470</td>
</tr>
<tr>
<td>Other operating income</td>
<td>194 743</td>
<td>122 523</td>
</tr>
<tr>
<td>Total performance</td>
<td>33 787 213</td>
<td>40 893 974</td>
</tr>
</tbody>
</table>

Cash flow statement

<table>
<thead>
<tr>
<th>Description</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in liquid assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual result</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Depreciation</td>
<td>92 864</td>
<td>74 180</td>
</tr>
<tr>
<td>Formation of reserves</td>
<td>90 098</td>
<td>1 216 088</td>
</tr>
<tr>
<td>Application of reserves</td>
<td>-</td>
<td>-528 216</td>
</tr>
<tr>
<td>Cash flow</td>
<td>182 962</td>
<td>762 052</td>
</tr>
<tr>
<td>Change in net current assets (without liquid assets)</td>
<td>-4 168 107</td>
<td>-3 921 244</td>
</tr>
<tr>
<td>Cash flow from business activities</td>
<td>-3 985 145</td>
<td>-3 159 192</td>
</tr>
<tr>
<td>Investments</td>
<td>-87 364</td>
<td>-76 979</td>
</tr>
<tr>
<td>Cash flow from investment activities</td>
<td>-87 364</td>
<td>-76 979</td>
</tr>
<tr>
<td>Cash flow from financing activities</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Change in liquid assets</td>
<td>-4 072 509</td>
<td>-3 236 171</td>
</tr>
</tbody>
</table>

Total expenditure

<table>
<thead>
<tr>
<th>Description</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services purchased</td>
<td>19 019 412</td>
<td>25 046 948</td>
</tr>
<tr>
<td>Personnel costs</td>
<td>12 509 357</td>
<td>13 547 228</td>
</tr>
<tr>
<td>Depreciation of assets</td>
<td>92 864</td>
<td>74 180</td>
</tr>
<tr>
<td>Operating expenditure</td>
<td>2 118 652</td>
<td>2 189 516</td>
</tr>
<tr>
<td>Total expenditure</td>
<td>33 740 285</td>
<td>40 857 872</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial income</td>
<td>-92 395</td>
<td>-104 208</td>
</tr>
<tr>
<td>Financial expenditure</td>
<td>80 102</td>
<td>47 907</td>
</tr>
<tr>
<td>Taxes</td>
<td>59 221</td>
<td>92 403</td>
</tr>
<tr>
<td>Financial result and taxes</td>
<td>46 928</td>
<td>36 102</td>
</tr>
<tr>
<td>Total expenditure</td>
<td>33 787 213</td>
<td>40 893 974</td>
</tr>
</tbody>
</table>
Accumulated accounts

(Contributions of the Cooperative Members and their application since the founding of Nagra in 1972)

Total performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Swiss Confederation</td>
<td>24 993 027</td>
<td>1 014 599</td>
<td>26 007 626</td>
</tr>
<tr>
<td>BKW FMB Energie AG</td>
<td>85 703 563</td>
<td>3 757 459</td>
<td>89 461 021</td>
</tr>
<tr>
<td>Kernkraftwerk Gösgen-Däniken AG</td>
<td>242 132 080</td>
<td>10 279 467</td>
<td>252 411 547</td>
</tr>
<tr>
<td>Kernkraftwerk Leibstadt AG</td>
<td>265 088 891</td>
<td>12 325 526</td>
<td>277 414 417</td>
</tr>
<tr>
<td>Nordostschweizerische Kraftwerke AG</td>
<td>188 016 321</td>
<td>7 738 698</td>
<td>195 755 019</td>
</tr>
<tr>
<td>Contributions to project expenditure</td>
<td>805 933 881</td>
<td>35 115 749</td>
<td>841 049 630</td>
</tr>
<tr>
<td>Contributions to administration costs</td>
<td>83 120 000</td>
<td>600 000</td>
<td>83 720 000</td>
</tr>
<tr>
<td>Contributions of Cooperative Members to Nagra</td>
<td>889 053 881</td>
<td>35 715 749</td>
<td>924 769 630</td>
</tr>
<tr>
<td>Contributions of GNW</td>
<td>65 265 331</td>
<td>-</td>
<td>65 265 331</td>
</tr>
<tr>
<td>Contributions of Cooperative Members</td>
<td>954 319 212</td>
<td>35 715 749</td>
<td>990 034 761</td>
</tr>
</tbody>
</table>

Adjustments

- Research contributions: 304 485
- Income from other services for Cooperative Members: 15 814 920
- Income from services for third parties: 45 021 215
- Income from deliveries and services: 61 140 620
- Adjustment for work in progress: 1 598 016
- Other operating income: 5 589 483

Total performance for accumulated accounts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Swiss Confederation</td>
<td>24 993 027</td>
<td>1 014 599</td>
<td>26 007 626</td>
</tr>
<tr>
<td>BKW FMB Energie AG</td>
<td>85 703 563</td>
<td>3 757 459</td>
<td>89 461 021</td>
</tr>
<tr>
<td>Kernkraftwerk Gösgen-Däniken AG</td>
<td>242 132 080</td>
<td>10 279 467</td>
<td>252 411 547</td>
</tr>
<tr>
<td>Kernkraftwerk Leibstadt AG</td>
<td>265 088 891</td>
<td>12 325 526</td>
<td>277 414 417</td>
</tr>
<tr>
<td>Nordostschweizerische Kraftwerke AG</td>
<td>188 016 321</td>
<td>7 738 698</td>
<td>195 755 019</td>
</tr>
<tr>
<td>Contributions to project expenditure</td>
<td>805 933 881</td>
<td>35 115 749</td>
<td>841 049 630</td>
</tr>
<tr>
<td>Contributions to administration costs</td>
<td>83 120 000</td>
<td>600 000</td>
<td>83 720 000</td>
</tr>
<tr>
<td>Contributions of Cooperative Members to Nagra</td>
<td>889 053 881</td>
<td>35 715 749</td>
<td>924 769 630</td>
</tr>
<tr>
<td>Contributions of GNW</td>
<td>65 265 331</td>
<td>-</td>
<td>65 265 331</td>
</tr>
<tr>
<td>Contributions of Cooperative Members</td>
<td>954 319 212</td>
<td>35 715 749</td>
<td>990 034 761</td>
</tr>
</tbody>
</table>

Explanations

Explanations in appendix pages 46 / 47
Accumulated accounts including allocations

Explanation

From the 2007 fiscal year, the accumulated accounts will be presented including allocations. Compared to previous years, this means that income and expenditure from deliveries and services, uncovered costs of the head office, other operating income and adjustments for work in progress are shown balanced in the general programme costs for the two repository programmes. If known, the contributions are allocated to a specific programme, otherwise distribution is according to the respective programme costs per year.

<table>
<thead>
<tr>
<th>Status</th>
<th>Increase</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total performance including allocations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swiss Confederation</td>
<td>24 993 027</td>
<td>1 014 599</td>
</tr>
<tr>
<td>BKW FMB Energie AG</td>
<td>85 703 563</td>
<td>3 757 459</td>
</tr>
<tr>
<td>Kernkraftwerk Gösgen-Däniken AG</td>
<td>242 132 080</td>
<td>10 279 447</td>
</tr>
<tr>
<td>Kernkraftwerk Leibstadt AG</td>
<td>265 088 891</td>
<td>12 325 526</td>
</tr>
<tr>
<td>Nordostschweizerische Kraftwerke AG</td>
<td>188 016 321</td>
<td>7 738 698</td>
</tr>
<tr>
<td>Contributions for project expenditure</td>
<td>805 933 881</td>
<td>35 115 749</td>
</tr>
<tr>
<td>Contributions to administration costs</td>
<td>83 120 000</td>
<td>600 000</td>
</tr>
<tr>
<td>Contributions of the Members of the Cooperative to Nagra</td>
<td>889 053 881</td>
<td>35 715 749</td>
</tr>
<tr>
<td>Contributions of GNW</td>
<td>65 265 331</td>
<td>-</td>
</tr>
<tr>
<td>Contributions of the Members of the Cooperative</td>
<td>954 319 212</td>
<td>35 715 749</td>
</tr>
</tbody>
</table>

Total expenditure including allocations

<table>
<thead>
<tr>
<th>Status</th>
<th>Increase</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accrued costs L/ILW (inc. GNW)</td>
<td>355 641 626</td>
<td>-</td>
</tr>
<tr>
<td>Geological studies</td>
<td>2 401 239</td>
<td>6 346 878</td>
</tr>
<tr>
<td>Nuclear technology and safety</td>
<td>1 400 938</td>
<td>1 737 763</td>
</tr>
<tr>
<td>Radioactive materials</td>
<td>941 931</td>
<td>988 667</td>
</tr>
<tr>
<td>Planning of facilities</td>
<td>528 506</td>
<td>734 010</td>
</tr>
<tr>
<td>Non-site-related activities</td>
<td>3 063 933</td>
<td>3 568 414</td>
</tr>
<tr>
<td>General programme costs</td>
<td>3 777 321</td>
<td>5 071 692</td>
</tr>
<tr>
<td>Fees and compensation</td>
<td>95 824 802</td>
<td>769 898 593</td>
</tr>
<tr>
<td>HLW programme</td>
<td>367 851 318</td>
<td>19 250 193</td>
</tr>
<tr>
<td>Contributions for project expenditure</td>
<td>805 933 881</td>
<td>35 115 749</td>
</tr>
<tr>
<td>Contributions to administration costs</td>
<td>83 120 000</td>
<td>600 000</td>
</tr>
<tr>
<td>Contributions of the Members of the Cooperative to Nagra</td>
<td>889 053 881</td>
<td>35 715 749</td>
</tr>
<tr>
<td>Contributions of GNW</td>
<td>65 265 331</td>
<td>-</td>
</tr>
<tr>
<td>Contributions of the Members of the Cooperative</td>
<td>954 319 212</td>
<td>35 715 749</td>
</tr>
</tbody>
</table>
Appendix to the annual accounts 2007

Notes on the annual accounts

1 Property and equipment
In 2007, two older vehicles were disposed of and a small bus was acquired for operations in the Mont Terri Rock Laboratory. The telephone system was also updated. Small acquisitions are contained in the position for other operating expenditure. Depreciation is documented separately. Income from the sale of property and equipment is contained in other operating income.

The facilities at Nagra’s headquarters and at the Grimsel Test Site are insured against fire damage for a total of 7.2 million CHF (same as the previous year). The fire insurance value of the depot and installations in Mellingen is 2.7 million CHF.

Under long-term financial obligations, a payment of 0.65 million CHF is shown for the planned sale of the parcel of land at Hägendorf.

2 Work in progress
Activated work in progress results exclusively from work performed for third parties.

3 Receivables from deliveries and services
This position includes claims against the Members of the Cooperative in the amount of 3.1 million CHF (2.6 million CHF in the previous year). Receivables with respect to third parties increased by 0.3 million CHF to 0.9 million CHF.

4 Accrued income
In 2007 there was an additional claim for 2.5 million CHF for project costs to be met by the Members of the Cooperative.

5 Liquid assets
Liquid assets decreased by 3.2 million CHF compared with the previous year. As of 31st December 2007, there were no fixed-term deposits.

In the cash flow statement, the net current assets decreased by 3.9 million CHF. This change is due mainly to the increase in receivables of 0.8 million CHF and accrued income of 2.5 million CHF and the decrease in deferred income of 1.6 million CHF and the increase in liabilities of 1.1 million CHF.

To secure a large-income project from Japan, a currency futures transaction in the amount of 58 million Japanese Yen was completed for the expected date of payment of 30.4.2008. The current value as of 31.12.2007 is 587,540 CHF and the non-realised and non-booked profit is 22,040 CHF.

6 Reserves
As before, reserves include amounts for vacation and overtime hours of employees; new is a reserve for restructuring costs as of December 2007. The tax reserves have been dissolved. Reserves increased overall by 0.7 million CHF.

In 2003, Nagra took over responsibility for the Wallenberg site from the now liquidated company GNW for a one-off payment of 4.8 million CHF. For a period of ten years, this amount is to be used for site recultivation work, production of project documentation and final reports and payment of various fees. No expenditure of this nature was incurred during the year and the reserve remains unchanged.

7 Payables from deliveries and services
Payables from deliveries and services increased during 2007 by around 1.1 million CHF to 5.7 million CHF.

The position contains liabilities towards Members of the Cooperative in the amount of 0.4 million CHF.

8 Deferrals
This position decreased in 2007 by around 1.6 million CHF.

Accruals and deferrals towards third parties increased by 0.1 million CHF to 1.3 million CHF.

9 Contributions of Members of the Cooperative
The contributions of the Members of the Cooperative increased during the year by around 6.8 million CHF and are made up as follows:

Contribution to administration costs of 0.6 million CHF, fees for supervision by the authorities (FOE, HSK, KSA) of 2.8 million CHF (2.5 million CHF in the previous year) and contributions to project costs of 32.3 million CHF (25.8 million CHF in the previous year).

10 Other operating income
This position contains mainly income from renting of machinery and equipment.

11 Services purchased
Services purchased include direct project costs. Services purchased increased by 6.8 million CHF to 25.0 million CHF. This amount contains fees of the regulatory authorities in the amount of 2.8 million CHF.

12 Personnel costs
Personnel costs increased by 8.3% to 13.5 million CHF compared to the previous year. This amount contains the restructuring costs and the newly created corporate success component. The number of staff at the end of the year (75.8 full-time positions) increased by 0.1 full-time position compared to the previous year.

13 Other operating expenditure
This contains rents of 0.8 million CHF, as well as the repair and maintenance of vehicles, computer systems and other office installations of a total of 1.3 million CHF.
Notes on the accumulated accounts

The accumulated presentation of the contributions from the Members of the Cooperative and the application of these contributions forms the basis, at the time of waste emplacement, for any adjustment payments between the Members. It also shows which work gives rise to project-related expenditure.

The structure of the total performance is now oriented largely to the operating accounts. The total expenditure is now also presented in consolidated form (see note 20).

14 Contributions of Members of the Cooperative

The contributions of the Members of the Cooperative towards covering project costs are determined annually as a percentage, based on the thermal output of the individual power plants. In 2007, the Members of the Cooperative were invoiced by Nagra in the amount of 30.0 million CHF. Taking into account the still open obligation of 2.5 million CHF and the balance from the previous year of 2.6 million CHF, the contributions of the Members amount to a total of 35.7 million CHF (28.9 million CHF in the previous year). Included in this is the contribution to administration costs in the amount of 0.6 million CHF, as well as fees passed on for supervision by the authorities (FOE, HSK, KSA) in the amount of 2.8 million CHF.

The contributions of GNW include the payments by GNW for contract work for the Wellenberg project, which is now complete.

15 Income from deliveries and services

The research contributions contain only contributions to the national disposal programmes. Other entries in income from deliveries and services agree with the operating accounts and are explained there.

16 Adjustment for work in progress

Adjustments to the status of work in progress agree with the operating accounts and are explained there.

17 Other operating income

The entries for other accumulated operating income agree with the operating accounts and are explained there.

18 Project-related expenditure for the repository programmes

The two repository programmes are basically structured in the same way in the accumulated accounts, oriented to the most important technical tasks to be performed up to the end of waste management activity. If not explicitly assigned to a repository programme, the following explanations on the individual positions apply for both programmes.

Instead of the previous lump sum of 0.4 million CHF, the administration costs and general project expenditure now show the remaining general costs associated with the headquarters according to internal performance calculations. This is neutralised in the consolidated presentation of total expenditure. Project-related expenditure in 2007 amounted to around 35.9 million CHF. 18.5 million CHF can be assigned to the L/ILW programme and 15.3 million CHF to the HLW programme. The administration costs and general project expenditure amounted to 2.1 million CHF.

a) Accrued costs of the disposal projects

The accumulated expenditure on the disposal projects was presented up till 2005 with a different structure, which is shown here depending on disposal project in one position. The allocation of costs accrued to date under the new division will be done at a later date.

b) Geological investigations

Geological investigations for identifying potential siting regions include studies in the investigation area of Northern Switzerland associated with geological disposal of high-level waste, as well as preparing the geological basis for a repository for low- and intermediate-level waste.

c) Nuclear technology and safety

This work includes the safety assessment of potential siting areas, laboratory investigations on the near-field and on various backfill materials.

d) Radioactive materials

Expenditure associated with the certification of suitability of wastes for disposal and ongoing documentation and inventorying of radioactive waste.

e) Planning of facilities

This position includes expenditure on the concepts for the surface and underground facilities of the deep geological repositories for both high-level and low- and intermediate-level waste.
Bericht der Revisionsstelle
an die Generalversammlung der
NAGRA Nationale Genossenschaft für
die Lagerung radioaktiver Abfälle
Wettingen

Als Revisionsstelle haben wir die Buchführung, die Jahresrechnung (Bilanz, Betriebsrechnung, Geldflussrechnung und Anhang / Seiten 37 bis 39 sowie Seiten 44 bis 45) sowie die Geschäftsführung der NAGRA Nationale Genossenschaft für die Lagerung radioaktiver Abfälle für das am 31. Dezember 2007 abgeschlossene Geschäftsjahr geprüft.

Für die Jahresrechnung und die Geschäftsführung ist die Verwaltung verantwortlich, während unsere Aufgabe darin besteht, die Jahresrechnung und die Geschäftsführung zu prüfen und zu beurteilen. Wir bestätigen, dass wir die Anforderungen hinsichtlich Befähigung und Unabhängigkeit erfüllen.

Gemäss unserer Beurteilung entsprechen die Buchführung, die Jahresrechnung und die Geschäftsführung dem schweizerischen Gesetz und den Statuten.

Wir empfehlen, die vorliegende Jahresrechnung zu genehmigen.

PricewaterhouseCoopers AG
Armin Bantli Stephan Buggel
Leitender Revisor

Zürich, 8. April 2008
Prediction of waste volumes and inventories for deep geological disposal

For the purpose of planning geological repositories, information is also required on expected waste volumes. The total volume for disposal will be around 99,000 m³ of waste packaged in disposal containers (see table for details). The volumes were determined assuming a 50-year operating lifetime for the existing power plants. The volume of waste from medicine, industry and research depends on the operational planning of the repositories.

<table>
<thead>
<tr>
<th>Conditioned waste</th>
<th>Volume (m³)</th>
<th>Activity (Bq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear power plants</td>
<td>3455</td>
<td>1.1 · 10¹⁵</td>
</tr>
<tr>
<td>Zwilag</td>
<td>920</td>
<td>3.2 · 10¹⁴</td>
</tr>
<tr>
<td>Federal Government interim storage facility</td>
<td>1385</td>
<td>7.4 · 10¹³</td>
</tr>
</tbody>
</table>

The Zwilag wastes are waste packages delivered to the facility by the nuclear power plants, waste packages from the plasma furnace and moulds with vitrified high-level waste from reprocessing.
Publications in 2007

Nagra Technical Reports (NTBs)
A complete list of all reports published to date (including price) can be obtained from Nagra’s headquarters in Wettingen or downloaded from the website. Some NTBs are also available as free downloads.

Print products for the general public
Three issues of “nagra info” appeared in 2007. The publication provides current information on waste management topics of general interest and is available free of charge.

Nagra also distributes brochures and DVDs on selected topics. The available materials can be found on Nagra’s website under the heading “Publications”. Individual products can be obtained free of charge or, in some cases, downloaded from the site.

In 2007, a brochure was published on the topic of natural analogues (available in German and French). Nagra also produced a small book on rock and geology with the title “Stein” (= rock, in German only). In order to illustrate the concept of long timescales, a fold-out brochure showing a trip through time was produced.

BAG Federal Office of Public Health www.bag.admin.ch
BFE Federal Office of Energy www.bfe.admin.ch
Decommissioning fund (BFE) www.sitilagungsfonds.ch
Entsorgungsnachweise (BFE) www.entsorgungsnachweise.ch
FLG Grimsel Test Site www.grimsel.com
FMT Mont Terri Rock Laboratory www.mont-terri.ch
Forum VERA www.forumvera.ch
HSK Swiss Federal Nuclear Safety Inspectorate www.hsk.ch
IAEA International Atomic Energy Agency www.iaea.org
ITC International Training Centre, School of Underground Waste Storage and Disposal www.itc-school.org
Kernenergie-Internetportal www.kernenergie.ch
KSA Federal Commission for the Safety of Nuclear Installations www.ksa.admin.ch
LES Waste Management Laboratory (PSI) les.web.psi.ch
Nuclear Energy Agency www.nea.fr
Nuklearforum www.nuklearforum.ch
PSI Paul Scherrer Institute www.psi.ch
Radioactive waste information (BFE) www.radaktivabfall.ch
Swissnuclear Nuclear Energy Group of swissenergy www.swissnuclear.ch
UVEK Federal Department for the Environment, Transport, Energy and Communications (DETEC) www.uvek.admin.ch
Waste management fund (BFE) www.entsorgungsfonds.ch
ZWIWAG Interim storage facility, Würenlingen www.zwilag.ch

Glossary
Andra Agence nationale pour la gestion des déchets radioactifs, France.
ATW Alpha-toxic waste.
BGS British Geological Survey.
BMU Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Germany.
CERN European Organization for Nuclear Research.
CRIEPI Central Research Institute of Electric Power Industry, Japan.
EDI Federal Department of Home Affairs, Switzerland.
EDRAM International Association for the Environmentally Safe Disposal of Radioactive Materials.
ENRESA Empresa Nacional de Residuos Radiactivos, Spain.
ENSI Swiss Federal Nuclear Safety Inspectorate
EU European Union.
FMT Mont Terri Rock Laboratory, rock laboratory in Opalinus Clay located near St-Ursanne, Canton Jura. Project managed by Swisstopo.
FOE Federal Office of Energy, under DETEC (Switzerland).
FOPH Federal Office of Public Health, under EDI (Switzerland).
GRS Gesellschaft für Anlagen- und Reaktorsicherheit (Germany).
GTS Grimsel Test Site, Nagra’s underground laboratory in crystalline rock on the Grimsel Pass, Canton Bern.
HLW High-level waste from reprocessing.
HSK Swiss Federal Nuclear Safety Inspectorate (Villigen), under the FDE.
IAEA International Atomic Energy Agency, Vienna.
ICRP International Commission on Radiological Protection, Stockholm.
ILW Long-lived intermediate-level waste.
ITC International Training Centre, School of Underground Waste Storage and Disposal, Innerskirchen (Canton Bern).
JAEA Japan Atomic Energy Agency.
JNFL Japan Nuclear Fuel Limited.
KNE Commission for Nuclear Waste Management (Switzerland).
KNS Commission for Nuclear Safety (Switzerland).
KSA Federal Commission for the Safety of Nuclear Installations (Switzerland).
LES Waste Management Laboratory, PSI.
LILW Low- and intermediate-level waste.
MIR Radioactive waste from medicine, industry and research.
MIRAM Model inventory of radioactive materials.
NEA Nuclear Energy Agency of the OECD, Paris.
Nirex United Kingdom Nuclear Industry Radioactive Waste Executive.
NPP Nuclear power plant.
NUMO Nuclear Waste Management Organization of Japan.
Obayashi Obayashi Corporation, Japan.
OECD Organisation for Economic Cooperation and Development.
OPG Ontario Power Generation, Canada.
PSI Paul Scherrer Institute, Villigen, Canton Aargau.
RWMC Radioactive Waste Management Funding and Research Center, Japan.
SCV-CEN Studiecentrum voor Kernenergie, Centre d’Etude de l’Energie Nucléaire, Belgium.
SER Swiss State Secretariat for Education and Research.
SF Spent fuel.
SKB Svensk Kärnbränslehandel AB, Sweden.
Swisstopo Federal Office of Topography, Mont Terri project manager from 2004.
ZWIWAG Centralised interim storage facility of the Swiss nuclear power plants for all categories of waste (Würenlingen, Canton Aargau).